Five-dimensional paracontact Lie algebras
نویسندگان
چکیده
منابع مشابه
Four - Dimensional Lie Algebras
The main goal is to classify 4-dimensional real Lie algebras gwhich admit a para-hypercomplex structure. This is a step toward the classification of Lie groups admitting the corresponding left-invariant structure and therefore possessing a neutral, left-invariant, anti-self-dual metric. Our study is related to the work of Barberis who classified real, 4-dimensional simply-connected Lie groups w...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملHypersymplectic Four-dimensional Lie Algebras
A study is made of real Lie algebras admitting a hypersymplectic structure, and we provide a method to construct such hypersymplectic Lie algebras. We use this method in order to obtain the classification of all hypersymplectic structures on fourdimensional Lie algebras, and we describe the associated metrics on the corresponding Lie groups. MSC. 17B60, 53C15, 53C30, 53C50.
متن کاملGeneralized Casimir Invariants of Six Dimensional Solvable Real Lie Algebras with Five Dimensional Nilradical
We finish the determination of the invariants of the coadjoint representation of six dimensional real Lie algebras, by determining a fundamental set of invariants for the 99 isomorphism classes of solvable Lie algebras with five dimensional nilradical. We also give some results on the invariants of solvable Lie algebras in arbitrary dimension whose nilradical has codimension one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2016
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2016.01.001